Хотя в обыденной жизни редко кому приходится непосредственно рассчитывать, чему равна скорость света, интерес к данному вопросу проявляется еще в детстве. Удивительно, но все мы ежедневно сталкиваемся с признаком константы скорости распространения электромагнитных волн. Скорость света – это фундаментальная величина, благодаря которой вся Вселенная существует именно в том виде, какой мы ее знаем.

Наверняка, каждый, наблюдая в детстве за вспышкой молнии и последующим за ней раскатом грома, пытался понять, чем вызвана задержка между первым и вторым явлением. Несложные мысленные рассуждения быстро приводили к закономерному выводу: скорость света и звука различна. Это первое знакомство с двумя важными физическими величинами. Впоследствии кто-то получал необходимые знания и мог легко объяснить происходящее. Что же является причиной странного поведения грома? Ответ заключается в том, что скорость света, составляющая около 300 тыс. км/с, почти в миллион раз превышает скорость распространения звуковых колебаний в воздухе (330 м/с). Поэтому человек сначала видит вспышку света от электрической дуги молнии и лишь через время слышит грохот грома. Например, если от эпицентра до наблюдателя 1 км, то свет преодолеет это расстояние за 3 микросекунды, а вот звуку понадобится целых 3 с. Зная скорость света и время задержки между вспышкой и громом, можно вычислить расстояние.

Попытки измерить ее предпринимались давно. Сейчас довольно забавно читать о проводимых экспериментах, однако, в те далекие времена, до появления точных приборов, все было более чем серьезно. При попытках узнать, какова скорость света, был проведен один интересный опыт. С одного конца вагона быстро перемещающегося поезда находился человек с точным хронометром, а с противоположной стороны его помощник по команде открывал заслонку лампы. Согласно задумке, хронометр должен был позволить определить скорость распространения фотонов света. Причем благодаря смене позиций лампы и хронометра (при сохраняющемся направлении движения поезда), удалось бы узнать, постоянна ли скорость света, или ее можно увеличить/уменьшить (в зависимости от направления луча, теоретически, быстрота движения поезда могла бы влиять на измеряемую в эксперименте скорость). Конечно, опыт не удался, так как скорость света и регистрация хронометром несопоставима.

Впервые максимально точное измерение было выполнено в 1676 году благодаря наблюдениям за спутником Юпитера. Олаф Ремер обратил внимание, что реальное появление Ио и расчетные данные различались на 22 минуты. Когда планеты сближались, задержка уменьшалась. Зная расстояние, удалось вычислить скорость света. Она составила около 215 тыс. км/с. Затем, в 1926 году, Д. Бредли, изучая изменение видимых положений звезд (аберрацию), обратил внимание на закономерность. Точка размещения звезды менялась в зависимости от времени года. Следовательно, влияние оказывало положение планеты относительно Солнца. Можно привести аналогию – капли дождя. Без ветра они летят вертикально вниз, но стоит побежать – и их видимая траектория изменяется. Зная скорость вращения планеты вокруг Солнца, удалось вычислить скорость света. Она составила 301 тыс. км/с.

В 1849 году А. Физо провел следующий опыт: между источником света и зеркалом, удаленным на 8 км, находилось вращающееся зубчатое колесо. Скорость его вращения увеличивали до тех пор, пока в следующем зазоре поток отраженного света не превращался в постоянный (немерцающий). Расчеты дали 315 тыс. км/с. Через три года Л. Фуко заменил колесо вращающимся зеркалом и получил 298 тыс. км/с.

Последующие опыты становились все точнее, учитывая преломление в воздухе и пр. В настоящее время актуальными считаются данные, полученные с помощью цезиевых часов и лазерного луча. Согласно им, скорость света в вакууме равна 299 тыс. км/с.

fb.ru

3. Кинетическая энергия электрона, вылетающего из цезия, равна 2 эВ. Какова длина волны света, вызывающего фотоэффект, если работа выхода равна 1,8 эВ?

1. Определите массу фотона желтого света с длиной волны 600 нм.

2. Пластинка никеля освещена ультрафиолетовыми лучами с длиной волны 2?10-7 м. Определите скорость фотоэлектронов, если работа выхода электронов из никеля равна 5 эВ.

1. Определите длину волны света, энергия кванта которого равна 3,6?10-19 Дж.

3. Произойдет ли фотоэффект, если на поверхность вольфрамовой пластины падает синий свет длиной волны 480 нм? Работа выхода электронов из вольфрама равна 7,2?10-19 Дж.

4. Пластина из никеля освещается светом, энергия фотонов которого равна 8 эВ. При этом в результате фотоэффекта из пластины вылетают электроны с энергией 3,5 эВ. Какова работа выхода электронов из никеля?

2. Работа выхода электронов из цинка равна 4 эВ. Какова скорость фотоэлектронов при освещении цинковой пластины излучением с длиной волны 200 нм?

4. Красная граница фотоэффекта у натрия, напыленного на вольфрам, равна 590 нм. Чему равна работа выхода электронов?

Пластинка никеля освещена ультрафиолетовыми лучами с длиной волны 2?10-7 м. Определите скорость фотоэлектронов, если работа выхода электронов из никеля равна 5 эВ.

Определите длину волны света, энергия кванта которого равна 3,6?10-19 Дж.

Определите массу фотона желтого света с длиной волны 600 нм.

Произойдет ли фотоэффект, если на поверхность вольфрамовой пластины падает синий свет длиной волны 480 нм? Работа выхода электронов из вольфрама равна 7,2?10-19 Дж.

Работа выхода электронов из цинка равна 4 эВ. Какова скорость фотоэлектронов при освещении цинковой пластины излучением с длиной волны 200 нм?

Кинетическая энергия электрона, вылетающего из цезия, равна 2 эВ. Какова длина волны света, вызывающего фотоэффект, если работа выхода равна 1,8 эВ?

Пластина из никеля освещается светом, энергия фотонов которого равна 8 эВ. При этом в результате фотоэффекта из пластины вылетают электроны с энергией 3,5 эВ. Какова работа выхода электронов из никеля?

Красная граница фотоэффекта у натрия, напыленного на вольфрам, равна 590 нм. Чему равна работа выхода электронов?

pandia.ru

Скорость света — 300 000 км/с, и ничто не может ее преодолеть

Скорость света — самая большая скорость, которая вообще возможна в нашей Вселенной, и она, как известно, равна 300 000 км/с. И еще установлено, что никакое тело, никакая частица не может достичь скорости света (тем более — ее превысить) — на это способны только фотоны и другие кванты, а также их «вторые натуры» — электромагнитные волны. Так? Да, все верно, но с некоторыми оговорками и уточнениями.

Когда говорят о скорости света, то чаще всего имеют в виду скорость распространения световой волны или фотона в вакууме. В пространстве, свободном от материи и любого излучения (в настоящем вакууме не должно быть ничего, даже радиоволн), свет как раз и будет достигать своей огромной секундной скорости в 300 тысяч километров. А вот при попадании в другие среды (в тот же воздух, стекло, прозрачные кристаллы и т. д.) свет тормозится.

Любая прозрачная (а при соблюдении некоторых условий — и непрозрачная) среда обладает той или иной оптической плотностью — чем она больше, чем с меньшей скоростью в ней может распространяться свет. Например, в прозрачном воздухе при давлении в одну атмосферу свет движется всего на 2 % медленнее, чем в вакууме (около 294 000 км/с). В дистиллированной воде скорость распространения света падает уже до 226 000 км/с, а в оптическом (крайне чистом и однородном) стекле свет движется со скоростью чуть менее 196 000 км/с. Алмаз понижает скорость света до 130 000 км/с, а некоторые кристаллы — и до еще меньших показателей. Разница поразительная, но это, как показали опыты, далеко не предел.

В самом начале третьего тысячелетия сразу две группы ученых проводили эксперименты по снижению скорости света в экзотической среде — конденсате Бозе — Эйнштейна, созданном из паров натрия и рубидия (в этом состоянии атомы соединяются попарно, образуя вещество с удивительными качествами). Результаты работ были ошеломительными — падение скорости света в парах натрия при почти абсолютном нуле удалось довести до 17 м/с! Как показали расчеты, при соблюдении некоторых условий скорость света в конденсате Бозе — Эйнштейна из натрия может составлять и 1 м/с, но эксперименты другой группы оказались более успешными.

Ученые, пропускающие луч лазера через пары рубидия, смогли и вовсе остановить свет. Но не стоит думать, что в объеме рубидия находились неподвижные фотоны — вовсе нет, так как фотоны не обладают массой покоя, а значит, могут существовать только в движении. Тогда почему здесь говорится об остановке света?

С точки зрения квантовой механики, все верно. Электромагнитная волна (не забываем, что свет подчиняется корпускулярно-волновому дуализму, то есть может быть представлен как волной, так и потоком частиц) будто бы «завязла» в парах рубидия, отдав им свою энергию. Однако при несложных манипуляциях (изменении внешнего управляющего магнитного поля) снова рождались фотоны, абсолютно идентичные (по поляризации, энергии и другим характеристикам) тем, что вошли в емкость с парами рубидия: фотоны как бы застревали в рубидии, а через какое-то время снова выходили, поэтому и можно говорить об остановке света.

Теперь стоит сказать о недостижимости скорости света другими частицами и физическими телами. ОТО говорит, что скорости в 300 000 км/с могут достичь только фотоны и только в вакууме. Однако возникают ситуации, когда частицы движутся быстрее, чем свет, и это вовсе не фантастика.

Уже говорилось, что свет в разных средах имеет разную скорость, и эта скорость никак не может увеличиваться. Однако другие частицы (например, электроны) не ограничены в том, с какой скоростью им лететь, например, сквозь стекло. Вот и выходит, что в некоторых средах скорость частиц может превышать скорость света.

Кстати, благодаря этому обстоятельству на дне океанов и в ядерных реакторах может возникать свечение воды. Дело в том, что если частица движется в какой-либо среде быстрее, чем движется в этой же среде свет, то возникает слабое свечение — это так называемый эффект Вавилова — Черенкова. На данном эффекте основаны некоторые детекторы, позволяющие измерять скорости и другие характеристики элементарных частиц. А свечение воды у дна океана может быть вызвано высокоэнергетическими электронами, испускаемыми ядрами радиоактивных элементов, находящихся в грунте.

Так что, прежде чем говорить о скорости света, необходимо оговаривать, в какой среде движется световой луч. Об этом же стоит упоминать и при разговоре о недостижимости скорости света, ведь в некоторых средах быстродвижущимся частицам легко преодолеть световую скорость.

interesnik.com

(Здесь публикуются контрольные только по двум темам из присланных одиннадцати, по всему курсу для 11-го класса. Полный текст задач опубликован на интернет-сайте «Физики»: http://fiz.1september.ru в рубрике «Дополнительные материалы». – Ред.)

Предлагаю систему контрольных работ, разработанных с целью подготовки учащихся к ЕГЭ. Каждая рассчитана на один урок, включает в себя шесть вариантов и является как бы тематическим фрагментом ЕГЭ. Уровень сложности пяти заданий дифференцирован. В каждом – три теста с выбором ответа и две задачи (одна проще, другая сложнее). Через три минуты после начала контрольной я собираю ответы на тесты, и учащиеся приступают к решению задач. Таким образом, темп (вопрос в минуту) оказывается максимально приближенным к условиям ЕГЭ.

Задачи оформляются традиционно: краткое условие, чертёж, расчётные формулы с краткими пояснениями, подстановка числовых данных, проверка единиц физических величин. Полная гласность подведения итогов контрольной работы обеспечивается детальной информированностью учащихся и системой выставления оценки. Решённый тест оценивается в 1 балл, 4-я задача – в 2 балла, более сложная 5-я – в 3 балла. Оценка за контрольную работу выставляется в зависимости от суммарного балла, полученного учащимся за правильные ответы на вопросы и задачи, по следующей шкале: 7–8 баллов – «5», 5–6 баллов – «4», 3–4 балла – «3», меньше 3 – «2».

Подобная структура контрольной работы позволяет объединить текущий контроль усвоения материала (задания 1–3) с проверкой глубины понимания физической теории (задачи 4, 5). Имея сводные данные по ответу на каждый вопрос и по решению каждой задачи, можно составить представление о динамике изучения материала каждым учащимся. Например, если учащийся регулярно правильно отвечает на первые три вопроса, но не справляется с четвёртой и пятой задачами, это означает, что он достаточно (на репродуктивном уровне) представляет себе материал курса. Наоборот, если учащийся регулярно решает пятую задачу, но неправильно отвечает на остальные вопросы, то это свидетельствует о достаточно глубоком, но фрагментарном изучении им курса.

Касьянов В.А. Физика-11: Тематическое и поурочное планирование. – М.: Дрофа, 2002.

Касьянов В.А. Единый государственный экзамен по физике в России и SAT-II в США. – Физика («ПС», № 40/03.

Коноплич Р.В., Орлов В.А., Добродеев Н.А., Татур А.О. Сборник тестовых заданий для тематического и итогового контроля. Физика-11. – М.: Интеллект-Центр, 2002.

Коноплич Р.В., Орлов В.А., Добродеев Н.А., Татур А.О. Сборник тестовых заданий для тематического и итогового контроля. Физика-10. – М.: Интеллект-Центр, 2002.

Кирик Л.А. Физика-11. Разноуровневые самостоятельные и контрольные работы. – М.: Илекса, 2003.

Кирик Л.А. Физика-10. Разноуровневые самостоятельные и контрольные работы. – М.: Илекса, 2003.

Орлов В.А., Ханнанов Н.К., Фадеева А.А. Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика. – М.: Интеллект-Центр, 2003.

Пигалицын Л.В. Тематические тесты по физике. 11 класс. – Н.Новгород: Нижегородский гуманитарный центр, 1997.

Контрольная работа № 10. Квантовая теория электромагнитного излучения вещества

1. Импульс фотона р связан с его частотой соотношением (h – постоянная Планка):

А) ; Б) ;

В) ; Г) .

2. Фотоэффект – это явление:

А) почернения фотоэмульсии под действием света;

Б) вылета электронов с поверхности металла под действием света;

В) свечения некоторых веществ в темноте;

Г) излучения нагретого твёрдого тела.

3. На рисунке представлена диаграмма энергетических уровней атома. Какой стрелкой обозначен переход с излучением фотона наибольшей частоты?

4. При переходе электрона в атоме водорода с одной орбиты на другую, более близкую к ядру, излучаются фотоны энергией 3,03 • 10 –19 Дж. Определите частоту излучения атома.

5. Работа выхода электрона из цинка равна 3,74 эВ. Определите красную границу фотоэффекта для цинка. Какую скорость получат электроны, вырванные из цинка при облучении его ультрафиолетовым излучением длиной волны 200 нм?

Вариант 2

1. Энергия фотона прямо пропорциональна ( – длина волны):

А) –2 ; Б) –1 ; В) ; Г) 2 .

2. На каком из графиков верно изображена зависимость фототока (при фотоэффекте) от напряжения между электродами при неизменной освещённости в стандартном эксперименте?

3. Атомы одного элемента, находившиеся в состояниях энергиями Е1 и Е2, при переходе в основное состояние испустили фотоны длинами волн 1 и 2 соответственно, причем 1 > 2. Для энергий этих состояний справедливо соотношение:

4. При переходе электрона в атоме водорода с третьей стационарной орбиты на вторую излучается фотон, соответствующий длине волны 0,652 мкм (красная линия водородного спектра). Какую энергию теряет при этом атом водорода?

5. Для некоторого металла красной границей фотоэффекта является свет длиной волны 690 нм. Определите работу выхода электрона из этого металла и максимальную скорость, которую приобретут электроны под действием излучения длиной волны 190 нм.

Вариант 3

1. Длина волны кр, соответствующая красной границе фотоэффекта, равна (А – работа выхода, h – постоянная Планка):

А) ; Б) ; В) ; Г) .

2. Фототок насыщения при фотоэффекте при уменьшении падающего светового потока:

А) увеличивается; Б) уменьшается; В) не изменяется;

Г) увеличивается или уменьшается в зависимости от условий опыта.

3. Какой цифрой на приведённой диаграмме энергетических уровней атома обозначен переход с излучением фотона максимальной частоты?

4. Глаз человека воспринимает свет длиной волны 500 нм, если световые лучи ежесекундно приносят в глаз энергию не менее 20,8 • 10 –18 Дж. Какое количество квантов света при этом ежесекундно попадает на сетчатку глаза?

5. Какую максимальную скорость приобретут фотоэлектроны, вырванные с поверхности молибдена излучением частотой 3 • 10 15 Гц? Работа выхода электрона для молибдена 4,27 эВ.

Вариант 4

1. Кто автор планетарной модели атома?

А) Э.Резерфорд; Б) Дж.Дж.Томсон;

В) Ф.Жолио-Кюри; Г) И.В.Курчатов.

2. Какое из приведённых ниже продолжений утверждения правильно? При переходе между двумя различными стационарными состояниями атом может:

А) излучать и поглощать фотоны любой энергии;

Б) излучать и поглощать фотоны лишь с определёнными значениями энергии;

В) излучать фотоны любой энергии, а поглощать лишь с некоторыми значениями энергии;

Г) поглощать фотоны любой энергии, а излучать лишь с некоторыми значениями энергии.

3. Какое из указанных явлений: I – спонтанное излучение; II – индуцированное излучение, – используется в оптических квантовых генераторах?

А) I; Б) II; В) I и II; Г) ни I, ни II.

4. При какой длине электромагнитной волны энергия фотона равна 9,93 • 10 –19 Дж?

5. Красная граница фотоэффекта для рубидия равна 0,81 мкм. Какое напряжение надо приложить к фотоэлементу, чтобы задерживать электроны, вырываемые из рубидия ультрафиолетовыми лучами длиной волны 0,1 мкм?

Вариант 5

1. Чему равна энергия фотона частотой ?

А) hс 2 ; Б) hс; В) h; Г) h/с.

2. При освещении катода вакуумного фотоэлемента монохроматическим светом происходит освобождение фотоэлектронов. Как изменится максимальная энергия фотоэлектронов при увеличении частоты света в 2 раза?

А) Не изменится; Б) увеличится в 2 раза;

В) увеличится менее, чем в 2 раза;

Г) увеличится более, чем в 2 раза.

3. Для данной диаграммы энергетических уровней укажите правильное утверждение:

4. Для ионизации атома азота необходима энергия 14,53 эВ. Найдите длину волны излучения, которое вызовет ионизацию.

5. Работа выхода электронов из кадмия 4,08 эВ. Светом какой длиной волны нужно освещать кадмий, чтобы максимальная скорость вылетающих электронов была 7,2 • 10 5 м/с?

Вариант 6

1. Частота красного света почти в 2 раза меньше частоты фиолетового. Импульс «красного» фотона по отношению к импульсу «фиолетового» фотона:

А) больше в 4 раза; Б) меньше в 4 раза;

В) больше в 2 раза; Г) меньше в 2 раза.

2. Какова природа сил, отклоняющих a-частицы на малые углы от прямолинейных траекторий в опыте Резерфорда?

А) Гравитационная; Б) кулоновская;

В) электромагнитная; Г) ядерная.

3. При освещении поверхности тела с работой выхода А монохроматическим светом частотой вырываются фотоэлектроны. Что определяет разность (hА)?

А) Среднюю кинетическую энергию фотоэлектронов;

Б) среднюю скорость фотоэлектронов;

В) максимальную кинетическую энергию фотоэлектронов;

Г) максимальную скорость фотоэлектронов.

4. При переходе электронов в атоме водорода с 4-й стационарной орбиты на 2-ю излучается фотон, дающий зелёную линию в спектре водорода. Определите длину волны этой линии, если при излучении фотона теряется 2,53 эВ энергии.

5. Отрицательно заряженная цинковая пластинка освещалась монохроматическим светом длиной волны 300 нм. Красная граница для цинка составляет 332 нм. Какой максимальный потенциал приобретает цинковая пластинка?

Контрольная работа № 11. Физика высоких энергий

Вариант 1

1. При испускании ядром -частицы образуется дочернее ядро, имеющее:

А) большее зарядовое и то же массовое число;

Б) меньшее зарядовое и то же массовое число;

В) большее зарядовое и меньшее массовое число;

Г) меньшее зарядовое и большее массовое число.

2. Число радиоактивных ядер в образце изменяется со временем, как показано на рисунке. Период полураспада материала образца:

А) 1 год; Б) 1,5 года; В) 2 года; Г) 2,5 года.

3. При радиоактивном распаде урана протекает ядерная реакция Какой при этом образуется изотоп?

4. Период полураспада радиоактивного элемента 400 лет. Какая часть образца из этого элемента распадается через 1200 лет?

5. Определите энергию связи, приходящуюся на один нуклон в ядре атома если масса последнего 22,99714 а.е.м.

1. В результате естественного радиоактивного распада образуются:

А) только -частицы;

Б) только -частицы;

В) только -кванты;

Г) -частицы, -частицы, -кванты, нейтрино.

2. Число радиоактивных ядер в образце изменяется со временем, как показано на рисунке. Найдите период полураспада материала.

А) 2 мс; Б) 2,5 мс; В) 3 мс; Г) 3,5 мс.

3. Какая частица Х образуется в результате ядерной реакции

4. Какая доля ядер радиоактивного изотопа с периодом полураспада 2 дня останется через 16 дней?

5. При обстреле ядер бора протонами получается бериллий . Какие ещё ядра получаются при этой реакции и сколько энергии высвобождается?

1. Сколько протонов входит в состав ядра

А) Поток ядер водорода; Б) поток ядер гелия;

В) поток нейтронов; Г) поток электронов.

3. Ядро атома может самопроизвольно делиться на два осколка. Один из осколков – барий , другой – криптон Сколько нейтронов вылетает при делении?

А) 1; Б) 2; В) 3; Г) 4.

4. Определите, с поглощением или выделением энергии протекает реакция

5. При бомбардировке -частицами бора наблюдается вылет нейтронов. Напишите уравнение ядерной реакции, приводящей к вылету одного нейтрона. Каков энергетический выход этой реакции?

1. Укажите второй продукт ядерной реакции

А) Нейтрон; Б) протон;

В) электрон; Г) -частица.

2. Что представляет собой -излучение?

А) Поток нейтронов;

Б) поток быстрых электронов;

В) поток квантов электромагнитного излучения;

Г) поток протонов.

3. В ядерных реакторах коэффициент размножения нейтронов в цепной реакции деления должен быть:

4. Определите энергию, которая выделяется при аннигиляции электрона и позитрона, если масса электрона 9,1 • 10 –31 кг.

5. Какова электрическая мощность атомной электростанции с КПД 25%, расходующей в сутки 220 г изотопа урана-235?

1. Какая частица испускается атомным ядром при -распаде?

А) Только нейтрон; Б) только -квант;

В) электрон и антинейтрино; Г) позитрон и нейтрон.

2. Какие силы действуют между нейтронами в ядре?

А) Гравитационные; Б) ядерные;

В) кулоновские; Г) ядерные и гравитационные.

3. В недрах Солнца температура достигает десятков миллионов градусов. Это объясняют:

А) быстрым вращением Солнца вокруг своей оси;

Б) делением тяжёлых ядер;

В) термоядерным синтезом лёгких ядер;

Г) реакцией горения водорода в кислороде.

4. При бомбардировке изотопа алюминия -частицами получается радиоактивный изотоп фосфора , который затем распадается с выделением позитронов. Напишите уравнения обеих реакций.

5. При бомбардировке нейтронами изотопа бора образуются -частицы. Напишите уравнение этой реакции и найдите её энергетический выход.

1. Масса ядра атома гелия больше массы ядра атома водорода в:

А) 2 раза; Б) 3 раза; В) 4 раза; Г) 6 раз.

2. Полное превращение элементов впервые наблюдалось в реакции , в результате которой появились два ядра:

А) водорода; Б) гелия; В) бериллия; Г) бора.

3. Какая доля радиоактивных ядер распадается через интервал времени, равный двум периодам полураспада?

А) 25%; Б) 50%; В) 75% Г) 100%.

4. В процессе термоядерного синтеза 5 • 10 4 кг водорода превращается в 49 644 кг гелия. Определите, сколько энергии выделяется при этом.

5. Мощность атомного реактора при использовании за сутки 0,2 кг изотопа урана-235 составляет 32 000 кВт. Какая часть энергии, выделяемой вследствие деления ядер, используется полезно?

Ольга Павловна Сорокина окончила факультет вычислительной математики и кибернетики Горьковского госуниверситета им. Н.И.Лобачевского в 1988 г. С 1993 г. преподаёт математику, физику, информатику и ИКТ (последние два года). Учитель высшей квалификационной категории. Автор двух статей педагогического содержания. Кредо: «Уча других, мы учимся сами». Вместе с мужем воспитывает двоих детей. Всё свободное время отдаёт самообразованию. Любит готовить, печь пироги и торты.

fiz.1september.ru

Рубрики: Тюнинг